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We address the longstanding problem of recovering dynamical information from noisy acoustic emission
signals arising from peeling of an adhesive tape subject to constant traction velocity. Using the phase space
reconstruction procedure we demonstrate the deterministic chaotic dynamics by establishing the existence of
correlation dimension as also a positive Lyapunov exponent in a midrange of traction velocities. The results are
explained on the basis of the model that also emphasizes the deterministic origin of acoustic emission by
clarifying its connection to stick-slip dynamics.
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Adhesion continues to generate new directions of interest
due to the wide ranging interdisciplinary issues involved and
its technological importance. For instance, the recent surge in
interest can be traced to its relevance to biological systems,
in particular, the desire to design adhesive materials that
mimic fibrillar adhesion inherent to biological species such
as the gecko �1�. Despite the progress, day-to-day experience
like acoustic emission �AE� during peeling of an adhesive
tape has remained ill explained. This can be traced to the fact
that most information is obtained from quasistatic or near
steady state conditions, and much less attention has been
paid to nonequilibrium time dependent dissipative aspects of
adhesion, and related phenomena such as friction �which is
adhesion and wear� �2–4� as also AE. As kinetic and dynami-
cal aspects involve the interplay of internal relaxation time
scales �determined by molecular mechanisms� with the ap-
plied time scale, they are important in a variety of situations
that are subject to fluctuating forces such as flexible joints,
composites, and even dynamics of cell orientation �5�.

Dynamical information can be obtained using experi-
ments on peeling of an adhesive tape mounted on a roller.
These experiments show that peeling is jerky accompanied
by a characteristic crackling noise �6,7�. The jerky nature is
attributed to the switching of the peel process between two
stable dissipative branches separated by an unstable one.
�The low and high velocity branches arise from viscous dis-
sipation and brittle fracture, respectively.� The negative
force-velocity relation is common to many stick-slip situa-
tions, for example, sliding friction �3,4� and the Portevin-Le
Chatelier �PLC� effect, a plastic instability observed in ten-
sile deformation of dilute alloys �8�, to name only two. In
general, stick-slip dynamics results from a competition
among inherent time scales �8,9�, here, the viscoelastic time
scale and the time scale of the pull speed. All stick-slip pro-
cesses are examples of deterministic nonlinear dynamics.

In contrast to the stick-slip nature of peeling, the origin of
AE �even in the general context� is ill understood. Recently,
we suggested that the energy dissipated in the form of AE
can be modeled in terms of the local displacement rate �10�.
A model relevant for the experimental setup that includes
such a term reproduces major experimental features of AE as
also that of the peel front dynamics �10�. The model also
predicts spatiotemporal chaos for a specific set of param-

eters. Moreover, it is long believed that AE and stick-slip
peel dynamics are related. But, establishing such a connec-
tion requires extracting quantitative dynamical information
from the AE signals which so far has not been possible,
largely due to the highly noisy nature of AE signals. Here,
we show that deterministic dynamics governs the AE process
by demonstrating the existence of chaotic dynamics using
nonlinear time series analysis. The results are explained us-
ing a model that also provides insight into the connection
between AE signals and stick-slip dynamics.

Retrieval of information about the underlying process is
also important in the general context of AE as it is observed
in a large number of systems such as the microfracturing
process, volcanic activity �11�, collective dislocation motion
�12,13�, etc. However, most studies �11,12�, except Ref. �13�,
are simple statistical studies showing the power law distribu-
tion of AE signals as experimental realizations of self-
organized criticality �14�. Even in Ref. �13�, the extracted
fractal dynamics of dislocation generated AE sources is
aided by use of multiple transducers. However, the situation
is more complex in peeling experiments as only a single
transducer is used leading to scalar AE signals that are also
substantially noisy, making the intended task even more
challenging.

To verify the prediction of chaotic dynamics, we have
performed peeling experiments of an adhesive tape mounted
on a roller driven at a constant traction velocity in the wide
range 0.2 to 7.6 cm /s. A schematic of the experimental setup
is shown in Fig. 1�a�. An adhesive roller tape of radius R is
mounted on an axis passing through O with a motor posi-
tioned at O� that provides a constant pull speed V. AE signals
associated with stick-slip dynamics are monitored using a
high quality microphone. Signals were digitized at the stan-
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FIG. 1. �Color online� �a� A schematic of the experimental
setup. �b� Plot of the scaled peel force function ��vs� as a function
of vs.
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dard audio sampling frequency of 44.1 kHz �having 6 kHz
band width� with 16 bit signals stored in raw binary files. For
low pull speeds V, regular AE bursts are seen that correspond
to stick-slip events separated by an oscillatory decaying am-
plitude. With increasing pull velocity, the AE bursts become
irregular and continuous, as shown in Fig. 2�a�. There are 38
data files, each containing 1.2�106 points. As in most ex-
periments on AE, signals are noisy.

Time series analysis �TSA� begins by unfolding the dy-
namics through phase space reconstruction of the attractor by
embedding the time series in a higher dimensional space
using a suitable time delay �15�. Let �x�k� , k=1,2 ,3 , . . . ,N�
be the AE signal with �t as the sampling time.

Then, d-dimensional vectors are defined by ��k
= �x�k� ,x�k+�� , . . . ,x�k+ �d−1����; k=1, . . . , �N− �d−1���.
The delay time � is obtained either from the autocorrelation
function or mutual information �16�. Then, the chaotic nature
of the attractor is quantified by establishing the existence of
correlation dimension and a positive Lyapunov exponent.

The correlation integral defined as the fraction of pairs of

points ��i and �� j whose distance is less than r, is given by

C�r�= 1
Np

�i,j��r− ���i−�� j � �, where ��¯� is the step function
and Np the number of vector pairs summed. A window is
imposed to exclude temporally correlated points �16�. If the
attractor is self-similar, then C�r��r�, where � is the corre-
lation dimension �15�. Then, as d is increased, one expects to
find convergence of the slope dlnC�r� /dlnr to a finite value
in the limit of small r. In practice, the scaling regime is
found at intermediate length scales due to the presence of
noise.

As the AE signals are noisy, we have used a modified
Eckmann’s algorithm suitable for noisy time series �17�.
Briefly, Eckmann’s algorithm �18� relies on connecting the

initial small difference vector ��i−�� j to an evolved difference
vector through a set of tangent matrices. The number of
neighbors used is typically min�2d ,d+4� contained in shell
size 	s defined by inner and outer radii 	i and 	0, respectively
�	i also acts as a noise filter�. The modification we effect is to
allow a larger number of neighbors so that the noise statistics

superposed on the signal is sampled properly. We impose an
additional constraint that the sum of the exponents be nega-
tive for a dissipative system, and also demand the existence
of stable positive and zero exponents �a necessary require-
ment for continuous time systems like AE� over a finite
range of shell sizes 	s. The algorithm works well for reason-
ably high levels of noise in model systems �17� as also for
experimental time series �for details, see Ref. �17��. We have
also repeated the analysis using the TISEAN package �16�.

The data sets are first cured using a noise reduction tech-
nique �16�. Figures 2�a� and 2�b� show the raw and cured
data, respectively, for V=4.8 cm /s. Clearly, the dominant
features �the peaks shown by arrows� of the time series are
retained except that the amplitude is reduced �16�. Indeed,
the two stage power law distribution for the amplitude of AE
signals for the raw data are retained except that the exponent
for small amplitudes is reduced �from 0.33 to 0.24� without
altering that for the large amplitudes. The cured data are used
to calculate the correlation dimension for all the data files.
However, while raw data are adequate for calculating the
Lyapunov spectrum from our algorithm, cured data are re-
quired for the TISEAN package. To reduce the computational
time, only one fifth of the total points are used.

The autocorrelation time is 4 units in sampling time. A
smaller value of �=1 is used to calculate C�r�. A log-log plot
of C�r� for the pull velocity 4.8 cm /s is shown in Fig. 3�a�
for d=6 to 10. A scaling regime of three orders of magnitude
is seen with ��2.65
0.05. However, converged values of �
�using our method and TISEAN package� are seen, only for
data sets for pull velocities from 3.8 to 6.2 cm /s with � in
the range 2.6 to 2.85
0.05.

Using our algorithm, the calculated Lyapunov spectrum is
shown in Fig. 3�b� for V=4.8 cm /s keeping 	o=0.065. Note
that the second exponent is close to zero as expected of con-
tinuous flow systems. We have calculated Lyapunov spec-
trum for the full range of traction velocities and we find
�stable� positive and zero exponents �19� only in the region
3.8 to 6.2 cm /s, consistent with the range of converged val-
ues of �.

As a cross check, we have calculated the Kaplan-Yorke

dimension Dky from the relation Dky = j+
�i=1

j �i

�� j+1� ;�i=1
j �i

�0;�i=1
j+1�i
0. For the case shown in Fig. 3�b�, we find

Dky =2+1.5 /1.6=2.94 consistent with � obtained from C�r�
�19�. Similar deviations are seen for other pull velocities.
The Dky values obtained from the TISEAN package are uni-
formly closer to the � values, typically Dky =�+0.1. Finally,
we note that the positive exponent decreases toward the end
of the chaotic domain �6.2 cm /s�. These results show unam-
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FIG. 2. �a� Raw and �b� cured AE signal for V=4.8 cm /s. �c�
Square of the amplitude �in arbitrary units� for the data in �b�. �d�
model AE signal for Vs=2.48 and m=0.001 which is similar to �c�
except for the magnitude of fluctuations.
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FIG. 3. �a� Correlation integral for pull velocity 4.8 cm /s from
d=6 to 10. Dashed lines are guides for the eye. �b� Lyapunov spec-
trum of the AE signals for traction velocities V=4.8 cm /s.
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biguously that the underlying dynamics responsible for AE
during peeling is chaotic in a midrange of pull speeds.

To understand the results, consider a recent model for
peeling of an adhesive tape �10�. In Fig. 1�a�, the distance
OO� is denoted by l and the peeled length of the tape PO� by
L. The angle between the tangent to the contact point P
� projection of the contact line PQ onto the plane of the
paper� and PO� is denoted by � and the angle �POO� by �.
From Fig. 1�a�, we get L cos �=−l sin � and L sin �
= l cos �−R. As the peel point P moves with a local velocity
v, the pull velocity is given by V=v+ u̇+R cos � �̇. Defining
u�y� to be the displacement with respect to the uniform
“stuck” peel front and defining v�y� ,��y�, and ��y� at all
points y along the contact line, the above equation general-
izes to

1

b
�

0

b

�V − v�y� − u̇�y� − R�̇�y�cos ��y��dy = 0, �1�

where b is the width of the tape. As the contact line dynamics
is controlled by the soft glue, we assume that the effective
elastic constant kg along the contact line is much smaller than
that of the tape material kt. This implies that the force along
PO� equilibrates fast and the integrand in Eq. �1� can be
assumed to vanish for all y.

The basic idea of the model is that while stick-slip dy-
namics is controlled by the peel force function f�v�, the as-
sociated AE is the energy dissipated during rapid movement
of the peel front. We begin by defining dimensionless vari-
able �=�ut, with �u

2= �kt /b�� where � is the mass per unit
width of the length L. Similarly, we define u=Xd, l= lsd, L
=Lsd, and R=Rsd using a basic length scale d= fmax /kt,
where fmax= f�vmax� is the maximum value of the peel force
function f�v�. We define the scaled peel force function
by ��vs�= f(vs�v�) / fmax �Fig. 1�b��. Here, vs=v /vc�ud and
Vs=V /vc�ud are the dimensionless peel and pull velocities,
respectively, with vc=vmax /�ud. Using a scaled variable
r=y /a, with a referring to a unit length along the peel
front, the scaled kinetic energy can be written as UK

s

= 1
2Cf

	0
b/a��̇�r�+

vcvs�r�
Rs �2dr+ 1

2	0
b/a�Ẋ�r��2dr. Here the first term

represents the rotational kinetic energy and the second term
the kinetic energy of stretched tape. Cf = �fmax /kt�2�� /��
represents the relative strength of the two terms, where �
is the moment of inertia per unit width of the roller tape.
The potential energy is given by UP

s = 1
2	0

b/aX2�r�dr

+
k0

2 	0
b/a� �X�r�

�r �2dr with k0= �kgb2 /kta
2�. The first term arises

from the displacement of the peel front due to stretching
of the tape and the second term due to inhomogeneity along
the front. The total dissipation is the sum of dissipation
arising from the peel force function ��vs� and
from the rapid movement of the peel front given

by Rs= 1
b	0

b/a	�(vs�r�)dvsdr+ 1
2	0

b/a�u� �Ẋ�r�
�r �2dr, respectively.

�s�vs� is assumed to be derivable from a potential function
��vs�=	��vs�dvs. The second term denoted by RAE is the
Rayleigh dissipation functional which is interpreted as the
energy dissipated in the form of AE. The scaled �u is related
to the unscaled dissipation coefficient �u through �u
=�u�u / �kta

2�.

The scaled local form of Eq. �1� is

Ẋ = �Vs − vs�vc + Rs ls

Ls �sin ���̇ . �2�

Using Lagrange equations of motion, we obtain

Ẍ = − X + k0
�2X

�r2 +
��vs�

�1 + ls/Ls sin ��
+ �u

�2Ẋ

�r2 , �3�

vcv̇
s =

Rsls

Ls 
�̇2�cos � − Rsls� sin �

Ls 
2� + �̈ sin �� − Ẍ ,

�4�

�̈ = −
vcv̇

s

Rs − CfR
s ls/Ls sin �

�1 + ls/Ls sin ��
��vs� . �5�

Equations �2�–�5� are solved using an adaptive step size
stiff differential equations solver �MATLAB “ode15s”� with
open boundary conditions. The nature of the dynamics de-
pends on the pull velocity Vs, the dissipation coefficient �u,
and Cf. Cf depends on the roller inertia I=�b �10−5� I
�10−2� and the tape mass m=�b �0.001�m�0.1�. �u
ranges from 0.001 to 0.1. Other parameters are fixed at Rs

=0.35, ls=3.5, k0=0.1 �kt=1000 N /m�, and N=50. The �un-
scaled� peel force function f�v� preserves major experimen-
tal features like the values of fmax, vmax, and the velocity
jump �6�.

The results reported are for m=0.001, and 0.055, I=0.01
and low dissipation coefficient �u=0.01. Physically, low �u
implies weak coupling between velocities on neighboring
points on the peel front. Thus, local dynamics dominates and
hence more ruggedness leading to higher dissipation RAE
�than for large �u�. Indeed, even for low Vs, the peel front
breaks up into stuck and peeled segments �see Fig. 4�a� for
Vs=2.48 and also Ref. �10��. Hence, the acoustic energy dis-
sipated RAE is noisy.

Several qualitative features of the experimental AE sig-
nals such as the change from burst to continuous type with
pull velocity are displayed by RAE. The observed two stage
power law distribution for the experimental AE signals is
reproduced by the model. For instance, for the model signal
in Fig. 2�d�, the exponent values are mE=0.6 and 2.0 for
small and large values, respectively, consistent with the two
exponents mA=0.24 and 3.0 for Fig. 2�b�. �Note that energy
RAE is the square of the AE amplitude.� Reference �10� also
reports a spatiotemporal chaotic state that corresponds to the
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FIG. 4. �Color online� �a� Stuck-peeled configuration for Vs

=2.48 and m=0.001. �b� The corresponding Lyapunov spectrum for
RAE.
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“edge of peeling picture” for high tape mass m=0.1, I
=0.01, and low pull speeds. However, as experimental AE
signals become chaotic as a function of pull velocity �not
studied in Ref. �10��, the correct quantity to analyze is the
energy dissipated in the form of AE, RAE�t� �an average over
the peel front�.

Following the embedding technique, we have analyzed
the model AE signal RAE�t� and computed the correlation
dimensions and Lyapunov spectrum for the entire instability
domain. We find stable positive and zero exponents for a
range of 	0 values. A plot of the spectrum for m=0.001 and
Vs=2.48 �	0=0.08� is shown in Fig. 4�b�, which gives Dky
=2+0.32 /0.77=2.4 while �=2.2
0.02 �19�. Converged val-
ues of � ranging from 2.2 to 2.7 �Dky in the range 2.4 to 3.0�
are seen in the subinterval 1.48�Vs�6.48 of the instability
along with stable positive exponents. Similar converged val-
ues of � for m=0.055 �ranging from 2.6 to 3.2 with Dky in
the range 2.7 to 3.3� are seen in a midrange of Vs. The value
of the positive exponent decreases for large Vs.

Several conclusions emerge from the study. First, the
presence of chaos in experimental AE signals supported by
the model shows that deterministic dynamics is responsible
for AE during peeling. Second, the model also provides an-
swers to questions raised by the TSA. For instance, the
model shows that while stick slip is controlled by the peel
force function, acoustic emission RAE is controlled by the
local kinetic energy bursts on the peel front generated during
switching between the stuck and peeled states �Fig. 4�a��.
This mechanism provides insight into the transition from
burst to continuous type of AE. At low pull velocities, Vs, the
number of stuck segments are few, each containing many
spatial points �Fig. 4�a��, with only a few large velocity
bursts leading to burst type RAE�t�. With increasing Vs, the
number of stuck segments increases �each containing fewer
points� with a large number of small local velocity bursts that

therefore lead to continuous AE signals �similar to Figs. 3�b�
and 3�c� of Ref. �10��. Hence, the decreasing trend of the
positive Lyapunov exponent with pull velocity observed in
experimental signals can be attributed to peel front breaking
up into large number of small stuck-peel segments. Thus, the
model provides insight and clarifies the connection between
stick slip and the AE process. The work also addresses the
general problem of extracting dynamical information from
noisy AE signals.

Our study has relevance to time dependent issues of ad-
hesion, in particular, to failure of adhesive joints and com-
posites that are subject to fluctuating loads. Specifically, the
analysis suggests that a larger value of the positive Lyapunov
exponent �its inverse giving the time scale� implies higher
dissipation and hence earlier failure. Thus, using the acoustic
emission technique to monitor AE signals in these cases
coupled with the estimation of the largest Lyapunov expo-
nent could prove to be useful.

Many of these features are common to the PLC effect.
The effect attributed to pinning and unpinning of dislocations
from solute atmosphere is clearly a distinct physical process
from peeling. Yet, the negative force-velocity relation and
the existence of chaotic dynamics in a midrange of drive
rates are seen both experiments and a model for the PLC
effect as well �8,9,17�. Dynamically, the existence of chaotic
dynamics as also the decreasing trend of the positive
Lyapunov exponent, seen in both in the PLC effect and peel-
ing, is the result of a reverse forward Hopf bifurcation �HB�
�end of the instability� that follows the forward HB �onset�
�9�. As a chaotic window is seen in both cases, it is likely
that it is a general feature in other stick-slip situations that
are limited to a window of drive rates.
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